Homological stability and densities of generalized configuration spaces
نویسندگان
چکیده
We prove that the factorization homologies of a scheme with coefficients in truncated polynomial algebras compute cohomologies its generalized configuration spaces. Using Koszul duality between commutative and Lie algebras, we obtain new expressions for latter. As consequence, uniform conceptual approach treating homological stability, densities, arithmetic densities Our results categorify, generalize, fact provide understanding coincidences appearing work Farb--Wolfson--Wood. computation stable also yields rational homotopy types which answer question posed by Vakil--Wood. hinges on study stability cohomological Chevalley complexes, is independent interest.
منابع مشابه
A configuration of homological stability results
This thesis has two purposes. The first is to serve as an introductory survey to the study of homological stability in algebraic topology. Particular focus is given to the study of configuration spaces and all the topics that we discuss will be related to them in some way. We prove homological stability theorems and use homological stability to answer questions from other fields of mathematics....
متن کاملStability of generalized QCA-functional equation in P-Banach spaces
In this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولCoincidences between homological densities, predicted by arithmetic
Motivated by analogies with basic density theorems in analytic number theory, we introduce a notion (and variations) of the homological density of one space in another. We use Weil’s number field/ function field analogy to predict coincidences for limiting homological densities of various sequences Z1m n pXq of spaces of 0-cycles on manifolds X. The main theorem in this paper is that these topo...
متن کاملHigher order representation stability and ordered configuration spaces of manifolds
Using the language of twisted skew-commutative algebras, we define secondary representation stability, a stability pattern in the unstable homology of spaces that are representation stable in the sense of Church, Ellenberg, and Farb [CEF15]. We show that the rational homology of configuration spaces of ordered particles in noncompact manifolds satisfies secondary representation stability. While...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometry & Topology
سال: 2021
ISSN: ['1364-0380', '1465-3060']
DOI: https://doi.org/10.2140/gt.2021.25.813